Dispersion, spreading and sparsity of Gabor wave packets

S. Ivan Trapasso

Joint work with Elena Cordero & Fabio Nicola

Polytechnic University of Torino (Italy)

International Conference on Generalized Functions

Dedicated to the 70th birthday of Prof. Stevan Pilipović

Ghent, 3/9/2020

A Gabor wave packet (or atom) is a function of the type

$$\pi(x,\xi)g=e^{2\pi i\xi\cdot y}g(y-x),$$

A Gabor wave packet (or atom) is a function of the type

$$\pi(x,\xi)g=e^{2\pi i\xi\cdot y}g(y-x),$$

where

 $\pi(x,\xi) = M_{\xi}T_x$ is the time-frequency shift along $(x,\xi) \in \mathbb{R}^{2d}$, with

$$M_{\xi}f(y) = e^{2\pi i \xi \cdot y} f(y), \quad T_{x}f(y) = f(y-x), \quad y \in \mathbb{R}^{d};$$

A Gabor wave packet (or atom) is a function of the type

$$\pi(x,\xi)\mathbf{g}=e^{2\pi i\xi\cdot y}g(y-x),$$

where

 $\pi(x,\xi) = M_{\xi}T_x$ is the time-frequency shift along $(x,\xi) \in \mathbb{R}^{2d}$, with

$$M_{\xi}f(y)=e^{2\pi i\xi\cdot y}f(y), \quad T_{x}f(y)=f(y-x), \quad y\in\mathbb{R}^{d};$$

• $g \in \mathcal{S}(\mathbb{R}^d)$ is a function possessing good localization in phase space, that is g and its Fourier transform \hat{g} are in some sense concentrated in small sets $T \in \mathbb{R}^d$ and $\Omega \in \widehat{\mathbb{R}^d}$ respectively.

A Gabor wave packet (or atom) is a function of the type

$$\pi(x,\xi)g=e^{2\pi i\xi\cdot y}g(y-x),$$

A Gabor wave packet (or atom) is a function of the type

$$\pi(x,\xi)g=e^{2\pi i\xi\cdot y}g(y-x),$$

Gabor analysis of functions

Decomposition of $f \in \mathcal{S}'(\mathbb{R}^d)$ along Gabor wave packets (Gabor/short-time Fourier transform):

$$V_g f(x,\xi) := \langle f, \pi(x,\xi)g \rangle = \int_{\mathbb{R}^d} e^{-2\pi i y \cdot \xi} f(y) \, \overline{g(y-x)} \, dy, \quad (x,\xi) \in \mathbb{R}^{2d}.$$

Gabor analysis of functions

Decomposition of $f \in \mathcal{S}'(\mathbb{R}^d)$ along Gabor wave packets (Gabor/short-time Fourier transform):

$$V_g f(x,\xi) := \langle f, \pi(x,\xi)g \rangle = \int_{\mathbb{R}^d} e^{-2\pi i y \cdot \xi} f(y) \overline{g(y-x)} \, dy, \quad (x,\xi) \in \mathbb{R}^{2d}.$$

Gabor analysis of functions

Decomposition of $f \in \mathcal{S}'(\mathbb{R}^d)$ along Gabor wave packets (Gabor/short-time Fourier transform):

$$V_g f(x,\xi) := \langle f, \pi(x,\xi)g \rangle = \int_{\mathbb{R}^d} e^{-2\pi i y \cdot \xi} f(y) \overline{g(y-x)} \, dy, \quad (x,\xi) \in \mathbb{R}^{2d}.$$

Modulation spaces are Banach spaces containing functions with prescribed phase-space integrability: for $1 \le p \le \infty$ and $s \in \mathbb{R}$,

$$M^{p}_{v_s}(\mathbb{R}^d) = \left\{ f \in \mathcal{S}'(\mathbb{R}^d) : \|f\|_{M^{p}_{v_s}} < \infty \right\},$$

where (for $1 \leq p < \infty$ - and similarly for $p = \infty$)

$$\|f\|_{M^p_{v_s}} := \left(\int_{\mathbb{R}^{2d}} |V_g f(z)|^p (1+|z|)^{sp} dz\right)^{1/p}.$$

Gabor analysis of operators

The Gabor transform allows one to perform phase-space analysis of a linear continuous operator $A: \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}'(\mathbb{R}^d)$:

$$V_{\gamma}(Af)(w) = \int_{\mathbb{R}^{2d}} \mathsf{K}_{\mathsf{A}}(w,z) V_{\mathsf{g}} f(z) dz, \quad w \in \mathbb{R}^{2d},$$

where we introduced the Gabor matrix/kernel of A with respect to the windows $g, \gamma \in \mathcal{S}(\mathbb{R}^d)$ (with $\|g\|_{L^2} = \|\gamma\|_{L^2} = 1$):

$$K_A(w,z) := \langle A\pi(z)g, \pi(w)\gamma \rangle, \quad w,z \in \mathbb{R}^{2d}.$$

Several results have been appearing in the literature for pseudodifferential operators, Fourier integral operators and propagators associated with Schrödinger-type evolution equations.

Metaplectic operators

Let $S \in \mathrm{Sp}(d,\mathbb{R})$ be a symplectic matrix, that is

$$S^{\top}JS = J, \qquad J = \begin{bmatrix} O & I \\ -I & O \end{bmatrix}.$$

Metaplectic operators

Let $S \in \mathrm{Sp}(d,\mathbb{R})$ be a symplectic matrix, that is

$$S^{\top}JS = J, \qquad J = \begin{bmatrix} O & I \\ -I & O \end{bmatrix}.$$

There exists a double-valued unitary representation μ of $\mathrm{Sp}(d,\mathbb{R})$ on $L^2(\mathbb{R}^d)$, called the metaplectic representation, such that the metaplectic operator $\mu(S)$ satisfies the intertwining relation

$$\pi(Sz) = \mu(S)\pi(z)\mu(S)^{-1}, \quad z \in \mathbb{R}^{2d}.$$

Metaplectic operators and Schrödinger propagators

Let Q be a real quadratic form on \mathbb{R}^{2d} , namely

$$Q(x,\xi) = \frac{1}{2}\xi \cdot A\xi + \xi \cdot Bx + \frac{1}{2}x \cdot Cx, \quad A, C \in \mathbb{R}^{d \times d}_{\mathrm{sym}},$$

Metaplectic operators and Schrödinger propagators

Let Q be a real quadratic form on \mathbb{R}^{2d} , namely

$$Q(x,\xi) = \frac{1}{2}\xi \cdot A\xi + \xi \cdot Bx + \frac{1}{2}x \cdot Cx, \quad A, C \in \mathbb{R}^{d \times d}_{\mathrm{sym}},$$

and consider its Weyl quantization:

$$Q^{W} = -\frac{1}{8\pi^{2}} \sum_{j,k=1}^{d} A_{j,k} \partial_{j,k}^{2} - \frac{i}{2\pi} \sum_{j,k=1}^{d} B_{j,k} x_{j} \partial_{k} - \frac{1}{4\pi} \text{Tr}(B) + \frac{1}{2} \sum_{j,k=1}^{d} C_{j,k} x_{j} x_{k}.$$

Metaplectic operators and Schrödinger propagators

Let Q be a real quadratic form on \mathbb{R}^{2d} , namely

$$Q(x,\xi) = \frac{1}{2}\xi \cdot A\xi + \xi \cdot Bx + \frac{1}{2}x \cdot Cx, \quad A, C \in \mathbb{R}^{d \times d}_{\mathrm{sym}},$$

and consider its Weyl quantization:

$$Q^{W} = -\frac{1}{8\pi^{2}} \sum_{j,k=1}^{d} A_{j,k} \partial_{j,k}^{2} - \frac{i}{2\pi} \sum_{j,k=1}^{d} B_{j,k} x_{j} \partial_{k} - \frac{1}{4\pi} \text{Tr}(B) + \frac{1}{2} \sum_{j,k=1}^{d} C_{j,k} x_{j} x_{k}.$$

The propagator for the Schrödinger equation $i\partial_t \psi = 2\pi Q^w \psi$ is a metaplectic operator, that is

$$U(t) = e^{-2\pi i t Q^{\mathbf{w}}} = \pm c(t)\mu(S_t),$$

where $c(t) \in \mathbb{C}$, |c(t)| = 1 and $t \mapsto S_t \in \operatorname{Sp}(d,\mathbb{R})$ is the solution of the classical equations of motion with Hamiltonian $Q(x,\xi)$ in phase space.

Gabor analysis of the Schrödinger propagator

Consider the Schrödinger propagator for the free particle $U(t)=e^{i(t/2\pi)\triangle}$, $t\in\mathbb{R}$, and fix $g\in\mathcal{S}(\mathbb{R}^d)$. Then

$$U(t) = e^{i(t/2\pi)\triangle} = \pm c(t)\mu(S_t), \qquad S_t = \begin{bmatrix} I & 2tI \\ O & I \end{bmatrix}.$$

Gabor analysis of the Schrödinger propagator

Consider the Schrödinger propagator for the free particle $U(t)=e^{i(t/2\pi)\triangle}$, $t\in\mathbb{R}$, and fix $g\in\mathcal{S}(\mathbb{R}^d)$. Then

$$U(t) = e^{i(t/2\pi)\triangle} = \pm c(t)\mu(S_t), \qquad S_t = \begin{bmatrix} I & 2tI \\ O & I \end{bmatrix}.$$

For any $t \in \mathbb{R}$ and $N \in \mathbb{N}$ there exists a constant C = C(t, N) > 0 such that

$$|\langle e^{i(t/2\pi)\triangle}\pi(z)g,\pi(w)g\rangle| \leq C(1+|w-S_tz|)^{-N}, \quad w,z\in\mathbb{R}^{2d}.$$

Sparsity phenomenon: the phase-space representation of U(t) is essentially concentrated along the graph of the classical flow S_t - in according with the correspondence principle of quantum mechanics.

The correspondence principle...

Initial datum: $\psi_0(y) = M_{\xi_0} T_{x_0} e^{-\pi |y|^2} = e^{2\pi i \xi_0 \cdot y} e^{-\pi |y-x_0|^2}$. Phase-space effect of U(t): the concentration is approximately moved along the classical flow $x(t) = x_0 + 2t\xi_0$, $\xi(t) = \xi_0$.

(Simulation with $x_0 = 10$ and $\xi_0 = 1$.)

The previous simulation also shows that:

The previous simulation also shows that:

■ The initial wave packet undergoes an intensity damping over time (dispersive phenomenon).

The previous simulation also shows that:

■ The initial wave packet undergoes an intensity damping over time (dispersive phenomenon). This is a consequence of the dispersive nature of the propagator:

$$|\langle e^{i(t/2\pi)\triangle}\pi(z)g,\pi(w)g\rangle| \leq C(1+|t|)^{-d/2}, \quad w,z\in\mathbb{R}^{2d}.$$

The previous simulation also shows that:

■ The initial wave packet undergoes an intensity damping over time (dispersive phenomenon). This is a consequence of the dispersive nature of the propagator:

$$|\langle e^{i(t/2\pi)\triangle}\pi(z)g,\pi(w)g\rangle| \leq C(1+|t|)^{-d/2}, \quad w,z\in\mathbb{R}^{2d}.$$

■ The initial wave packet undergoes a sort of stretching over time (spreading phenomenon).

The previous simulation also shows that:

■ The initial wave packet undergoes an intensity damping over time (dispersive phenomenon). This is a consequence of the dispersive nature of the propagator:

$$|\langle e^{i(t/2\pi)\triangle}\pi(z)g,\pi(w)g\rangle| \leq C(1+|t|)^{-d/2}, \quad w,z\in\mathbb{R}^{2d}.$$

■ The initial wave packet undergoes a sort of stretching over time (spreading phenomenon). This is ultimately an effect of diffraction, characterizing the dynamics of wave propagation.

The problem

All these phenomena are well understood when viewed individually.

The problem

All these phenomena are well understood when viewed individually.

Is there a way to provide refined estimates for the Gabor kernel of a metaplectic operator $\mu(S)$ where all these features are fully and simultaneously represented?

The Euler decomposition of a symplectic matrix

For any $S \in \mathrm{Sp}(d,\mathbb{R})$ there exist (non-unique) symplectic rotations $U,V \in \mathrm{Sp}(d,\mathbb{R}) \cap \mathrm{O}(2d,\mathbb{R})$ such that

$$S = U^{\top}DV$$
, $D = \begin{bmatrix} \Sigma & O \\ O & \Sigma^{-1} \end{bmatrix}$, $\Sigma = \begin{bmatrix} \sigma_1 & & & \\ & \ddots & \\ & & \sigma_d \end{bmatrix}$,

where $\sigma_1 \ge ... \ge \sigma_d \ge 1 \ge \sigma_d^{-1} \ge ... \ge \sigma_1^{-1} > 0$ are the singular values of S.

The Euler decomposition of a symplectic matrix

For any $S \in \mathrm{Sp}(d,\mathbb{R})$ there exist (non-unique) symplectic rotations $U,V \in \mathrm{Sp}(d,\mathbb{R}) \cap \mathrm{O}(2d,\mathbb{R})$ such that

$$S = U^{\top}DV$$
, $D = \begin{bmatrix} \Sigma & O \\ O & \Sigma^{-1} \end{bmatrix}$, $\Sigma = \begin{bmatrix} \sigma_1 & & & \\ & \ddots & \\ & & \sigma_d \end{bmatrix}$,

where $\sigma_1 \ge ... \ge \sigma_d \ge 1 \ge \sigma_d^{-1} \ge ... \ge \sigma_1^{-1} > 0$ are the singular values of S.

We also introduce the related matrix

$$D' = \begin{bmatrix} \Sigma^{-1} & O \\ O & I \end{bmatrix}.$$

Theorem (CNT 2020 - Gabor atoms in the Schwartz class)

For any $g, \gamma \in \mathcal{S}(\mathbb{R}^d)$ and N > 0 there exists C > 0 such that, for every $S \in \mathrm{Sp}(d,\mathbb{R})$ and any Euler decomposition of S,

$$|\langle \mu(S)\pi(z)g,\pi(w)\gamma\rangle| \leq C(\det\Sigma)^{-1/2}(1+|D'U(w-Sz)|)^{-N},$$

for any $z, w \in \mathbb{R}^{2d}$.

Theorem (CNT 2020 - Gabor atoms in the Schwartz class)

For any $g, \gamma \in \mathcal{S}(\mathbb{R}^d)$ and N > 0 there exists C > 0 such that, for every $S \in \mathrm{Sp}(d,\mathbb{R})$ and any Euler decomposition of S,

$$|\langle \mu(S)\pi(z)g,\pi(w)\gamma\rangle| \leq C(\det \Sigma)^{-1/2}(1+|D'U(w-Sz)|)^{-N},$$

for any $z, w \in \mathbb{R}^{2d}$.

Note that all the expected features of the Gabor kernel are simultaneously represented here, in particular:

- dispersion multiplication by $(\det \Sigma)^{-1/2}$;
- spreading dilation by D'U;
- sparsity quasi-diagonal structure along S.

Theorem (CNT 2020 - Gabor atoms in the Schwartz class)

For any $g, \gamma \in \mathcal{S}(\mathbb{R}^d)$ and N > 0 there exists C > 0 such that, for every $S \in \mathrm{Sp}(d,\mathbb{R})$ and any Euler decomposition of S,

$$|\langle \mu(S)\pi(z)g,\pi(w)\gamma\rangle| \leq C(\det\Sigma)^{-1/2}(1+|D'U(w-Sz)|)^{-N},$$

for any $z, w \in \mathbb{R}^{2d}$.

Note that all the expected features of the Gabor kernel are simultaneously represented here, in particular:

- dispersion multiplication by $(\det \Sigma)^{-1/2}$;
- **spreading** dilation by D'U;
- sparsity quasi-diagonal structure along S.

Theorem (CNT 2020 - Gabor atoms in the Schwartz class)

For any $g, \gamma \in \mathcal{S}(\mathbb{R}^d)$ and N > 0 there exists C > 0 such that, for every $S \in \mathrm{Sp}(d,\mathbb{R})$ and any Euler decomposition of S,

$$|\langle \mu(S)\pi(z)g,\pi(w)\gamma\rangle| \leq C(\det\Sigma)^{-1/2}(1+|D'U(w-Sz)|)^{-N},$$

for any $z, w \in \mathbb{R}^{2d}$.

Note that all the expected features of the Gabor kernel are simultaneously represented here, in particular:

- dispersion multiplication by $(\det \Sigma)^{-1/2}$;
- spreading dilation by D'U;
- sparsity quasi-diagonal structure along *S*.

Back to the Schrödinger propagator: sparsity and dispersion

Recall that
$$e^{i(t/2\pi)\triangle} = \pm c(t)\mu(S_t)$$
, where $S_t = \begin{bmatrix} I & 2tI \\ O & I \end{bmatrix}$.

Back to the Schrödinger propagator: sparsity and dispersion

Recall that $e^{i(t/2\pi)\triangle} = \pm c(t)\mu(S_t)$, where $S_t = \begin{bmatrix} I & 2tI \\ O & I \end{bmatrix}$. For any fixed $t \in \mathbb{R}$ and any Euler decomposition (U_t, V_t, Σ_t) of S_t , the refined estimate reads

$$|\langle e^{i(t/2\pi)\triangle}\pi(z)g,\pi(w)\gamma\rangle| \leq C(\det\Sigma_t)^{-1/2}(1+|D_t'U_t(w-S_tz)|)^{-N}.$$

Back to the Schrödinger propagator: sparsity and dispersion

Recall that $e^{i(t/2\pi)\triangle}=\pm c(t)\mu(S_t)$, where $S_t=\begin{bmatrix}I&2tI\\O&I\end{bmatrix}$. For any fixed $t\in\mathbb{R}$ and any Euler decomposition (U_t,V_t,Σ_t) of S_t , the refined estimate reads

$$|\langle e^{i(t/2\pi)\triangle}\pi(z)g,\pi(w)\gamma\rangle| \leq C(\det\Sigma_t)^{-1/2}(1+|D_t'U_t(w-S_tz)|)^{-N}.$$

The largest d singular values of S_t coincide:

$$\sigma_j = \sigma(t) = \sqrt{1+t^2} + |t|, \quad j=1,\ldots,d,$$

hence $(\det \Sigma_t)^{-1/2} \simeq (1+|t|)^{-d/2}$ as expected.

Back to the Scrödinger propagator: spreading

The spreading phenomenon manifests itself as a dilation by

$$D_t'U_t = rac{1}{\sqrt{1+\sigma(t)^2}} egin{bmatrix} I & \sigma(t)^{-1}I \ -I & \sigma(t)I \end{bmatrix}, \quad t \geq 0.$$

Back to the Scrödinger propagator: spreading

The spreading phenomenon manifests itself as a dilation by

$$D'_t U_t = \frac{1}{\sqrt{1 + \sigma(t)^2}} \begin{bmatrix} I & \sigma(t)^{-1}I \\ -I & \sigma(t)I \end{bmatrix}, \quad t \geq 0.$$

Toy example for d=1: wave packet $\pi(z)g$ with z=0 and g concentrated on the unit ball S in \mathbb{R}^2 .

$$(D'_t U_t)^{-1}(S) = \{(x,\xi) \in \mathbb{R}^2 : |D'_t U_t(x,\xi)| < 1\}.$$

Figure: $(D'_t U_t)^{-1}(S)$ for t = 2.4

$$(D'_t U_t)^{-1}(S) = \{(x,\xi) \in \mathbb{R}^2 : |D'_t U_t(x,\xi)| < 1\}.$$

Figure: $(D'_t U_t)^{-1}(S)$ for t = 5

$$(D'_t U_t)^{-1}(S) = \{(x, \xi) \in \mathbb{R}^2 : |D'_t U_t(x, \xi)| < 1\}.$$

Figure: $(D'_t U_t)^{-1}(S)$ for t = 10

Further results

Theorem (CNT 2020 - Gabor atoms in modulation spaces)

1 Let $1 \le p, q, r \le \infty$ satisfy 1/p + 1/q = 1 + 1/r. For any $g \in M^p(\mathbb{R}^d)$, $\gamma \in M^q(\mathbb{R}^d)$, $S \in \mathrm{Sp}(d,\mathbb{R})$, there exists $H \in L^r(\mathbb{R}^{2d})$ such that, for any $z, w \in \mathbb{R}^{2d}$,

$$|\langle \mu(S)\pi(z)g,\pi(w)\gamma\rangle| \leq H(D'U(w-Sz)),$$
 (\(\psi\)

with

$$||H||_{L^r} \leq (\det \Sigma)^{1/2-1/r} ||g||_{M^p} ||\gamma||_{M^q}.$$

Further results

Theorem (CNT 2020 - Gabor atoms in modulation spaces)

1 Let $1 \le p, q, r \le \infty$ satisfy 1/p + 1/q = 1 + 1/r. For any $g \in M^p(\mathbb{R}^d)$, $\gamma \in M^q(\mathbb{R}^d)$, $S \in \mathrm{Sp}(d,\mathbb{R})$, there exists $H \in L^r(\mathbb{R}^{2d})$ such that, for any $z, w \in \mathbb{R}^{2d}$,

$$|\langle \mu(S)\pi(z)g,\pi(w)\gamma\rangle| \leq H(D'U(w-Sz)),$$
 (\(\psi\)

with

$$||H||_{L^r} \leq (\det \Sigma)^{1/2-1/r} ||g||_{M^p} ||\gamma||_{M^q}.$$

2 Let s>2d. For any $g,\gamma\in M^\infty_{v_s}(\mathbb{R}^d)$ ($\subset M^1(\mathbb{R}^d)$) there exists $H\in L^\infty_{v_{s-2d}}(\mathbb{R}^{2d})$ such that (\bigstar) holds, with

$$\|H\|_{L^{\infty}_{v_s-2d}} \leq (\det \Sigma)^{-1/2} \|g\|_{M^{\infty}_{v_s}} \|\gamma\|_{M^{\infty}_{v_s}}.$$

Some applications

Given an open cone Γ in \mathbb{R}^{2d} and $g \in \mathcal{S}(\mathbb{R}^d) \setminus \{0\}$ we define the space of $M^1_{(g)}(\Gamma)$ of M^1 -regular distributions on the cone Γ with respect to g as the set of all $f \in \mathcal{S}'(\mathbb{R}^d)$ such that

Some applications

Theorem (CNT 2020 - M^1 regularity on a cone is preserved by $\mu(S)$)

Let $S \in \operatorname{Sp}(d,\mathbb{R})$, $g, \gamma \in \mathcal{S}(\mathbb{R}^d) \setminus \{0\}$ and $\Gamma, \Gamma' \subset \mathbb{R}^{2d}$ be open cones such that $\overline{\Gamma' \cap \mathbb{S}^{2d-1}} \subset \Gamma \cap \mathbb{S}^{2d-1}$. If $f \in \mathcal{S}'(\mathbb{R}^d)$ is M^1 -regular on Γ with respect to g then $\mu(S)f$ is M^1 -regular on $S(\Gamma')$ with respect to γ .

Some applications

Corollary

Consider $1 \le p \le \infty$. There exists C > 0 such that, for any $f \in M^p(\mathbb{R}^d)$, $S \in \operatorname{Sp}(d,\mathbb{R})$,

$$\|\mu(S)f\|_{M^p} \le C(\det \Sigma)^{|1/2-1/p|} \|f\|_{M^p}.$$

Want more details?

The talk is based on the paper

E. Cordero, F. Nicola and S. I. Trapasso.

Dispersion, spreading and sparsity of Gabor wave packets for metaplectic and Schrödinger operators.

arXiv:2005.03911

Want more details?

The talk is based on the paper

E. Cordero, F. Nicola and S. I. Trapasso.

Dispersion, spreading and sparsity of Gabor wave packets for metaplectic and Schrödinger operators.

arXiv:2005.03911

Thank you for your kind attention!